構造方程式モデリング

潜在移行分析の解説スライド

ネブラスカ子ども・若者・家族・学校研究センターのJi Hoon Ryooらの解説スライドからら重要そうなところをピックアップ。 http://r2ed.unl.edu/presentations/2012/SRM/033012_RyooWu/033012_RyooWu.pdf 潜在成長モデルとの違い 時間の経過とともに変化する…

タイタニック・データを用いた交互作用項のある媒介分析[Mplus]

以前のエントリーの続き。 ides.hatenablog.com 今回は交互作用を含むモデル。 独立変数(介入)と媒介変数は交互作用が生じることが多いので交互作用項を作成して分析に含めるか、連続変数の場合はセンタリング(参照)をした方がいいと言われている。タイタニ…

潜在移行分析[Mplus]

www.statmodel.com こちらの8.13の例をモディファイしたもの。8.13は共変量が設定されているためややこしいように思えたので、共変量を取り除いたシンプルにものにしてみた。 c1とc2は2つの時点の潜在変数である。潜在以降分析は潜在クラスが2時点、3時点で…

同族テストモデル・タウ等価モデル・平行テストモデル[R]

信頼性係数はα係数が使用されることが多いが、問題点が指摘されている。α係数は因子構造を無視して一次元性の検証をしているという点である。別の言い方をすると、各因子での真の得点が共通している(一元性)と仮定しているが、ほとんどのケースでは一元性は…

二次因子の信頼性係数の計算[R]

因子分析の二次因子のω係数を計測する。パッケージはsemToolsを使用する。 www.rdocumentation.org ω係数についてはこちら。 ides.hatenablog.com データ lavvanに同梱されているデータHolzingerSwineford1939を使用する。HolzingerSwineford1939を使用した…

媒介項と調整項

www.youtube.com 簡潔な説明。 媒介項(Mediator)は、因果関係があり、結果の先だったものでなければならない。 調整項(Moderator)は、因果関係の結果であってはならない。

SPSSでPROCESSマクロを使用しModel4を分析する[PROCESS][SPSS]

PROCESSはAndrew F. Hayesによって開発された媒介分析のマクロである。日本語情報は少ししか無く、英語では多く出てくるので、海外ではよく知られた分析ツールなのだと思う。PROCESSを使う媒介分析についても日本語の資料は数少ないが、海外では既に一般化し…

媒介分析の推定方法と尺度水準による推定結果の違い[Mplus]

www.statmodel.com こちらのTable 8.29のケース。 もともとの推定は下記のエントリーで、こちらは最尤推定を行うモデルである。 ides.hatenablog.com ides.hatenablog.com アプローチ2 ロバスト重み付き最小二乗法 データはスタック形式、Analysis: estimato…

2値変数をアウトカムとしたプロビットモデルの媒介分析-媒介変数をカテゴリカル変数にした場合[Mplus]

先日のエントリの続き。こちらのTable 8.26である。 ides.hatenablog.com 暴露変数はtx、媒介変数intentはベースラインの約6ヵ月後に測定されたもので、次の2ヵ月間にタバコを使用するか否かという意思である。アウトカムciguseは、フォローアップで測定され…

2値の曝露変数、2値の媒介変数、連続変数のアウトカムの媒介分析

こちらのTable 8.22の例を解説する。コードとデータはリンク先のinpファイルを参照のこと。 www.statmodel.com 仮想データ。 モデル mは媒介変数、mxはmとxの間の相互作用項、xは2値の暴露変数である。 コード title: hypothetical potential outcome exampl…

介入-媒介変数に相互作用を伴わない2値データのアウトカム変数を用いた媒介分析[Mplus]

こちらのTable 8.8の例を解説する。コードはリンク先のinpファイルを参照のこと。 www.statmodel.com データ 大学生女性の間でヒトパピローマウイルス(HPV)のワクチン接種率を高めることを目的とした無作為化対照試験のデータを分析している。被験者は3つ…

2値変数をアウトカムとしたロジットモデルの媒介分析[Mplus]

こちらのTable 8.5の例を解説する。コードはリンク先のinpファイルを参照のこと。 www.statmodel.com データの詳細は以前のエントリーを参照のこと。 ides.hatenablog.com モデル パス図で表現されるモデルはプロビットモデルの時と違いはない。 コード プロ…

2値変数をアウトカムとしたプロビットモデルの媒介分析[Mplus]

こちらのTable 2.1の例を解説する。コードはリンク先のinpファイルを参照のこと。 www.statmodel.com 分析はMacKinnon et al.(2007)のもの。 MacKinnon, D.P., Lockwood. C.M., Brown, C.H., Wang, W. & Hoffman, J.M. (2007). The intermediate endpoint …

媒介分析[Mplus]

職場における性差別の実験的研究 職場における性差別の実験的研究の分析。 こちらのTable 2.1の例を解説する。コードはリンク先のinpファイルを参照のこと。 www.statmodel.com データ onlinelibrary.wiley.com Garcia, D. M., Schmitt, M. T., Branscombe, …

間接効果と総合効果[Mplus]

UCLAのidreの解説から。 https://stats.idre.ucla.edu/mplus/seminars/mplus-class-notes/path/ データ https://stats.idre.ucla.edu/wp-content/uploads/2016/02/path.dat 高校の成績 (hs) 大学の成績 (col) GRE スコア (gre) および大学院の成績 (grad) モ…

2値のアウトカムを持ち、データ欠落を伴い、媒介変数のあるパスモデル[Mplus]

Mplusの媒介変数(Mediator)の分析。データ欠落については今回はおまけ程度で。 図で一目瞭然だが、ロジスティクス回帰分析(左)に媒介変数が入ったモデル(右)である。 出典はこちら。 https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.367.551&rep…

lavaanで順序カテゴリカル因子分析[R]

IPIP-NEOデータの呼び出しと格納 library("psych") data(bfi) # IPIP-NEOデータ d1 <- bfi[1:10] # 因子分析に使用するのは1~10列目。2つの因子のみ。 d1 <-na.omit(d1) # 欠損値のあるケースを削除 モデルと実行 library(lavaan) model <- ' Ag =~ A1 + A…

lavaanで行う重回帰分析[R]

lavaanなどのSEMパッケージでも回帰分析ができるとは以前から知っていたが、具体的にどうすればいいのか知らなかったので調べてみた。 シミュレーションデータ AERパッケージの中のデータCPS1985を用いる。 賃金(wage)に対する効果を見る重回帰分析をデモ…

モンテカルロ検定に基づく間接効果の推定と信頼区間[R]

デルタ法による間接効果の推定値はサンプルサイズが小さい場合には、正規分布を仮定したz値を使った検定には不向きとなる。その一つの解決策として、モンテカルロ検定に基づく間接効果の推定と信頼区間の推定がある。利用するのはsemToolsパッケージである。…

媒介変数と間接効果と総合効果[R]

lavaan - Mediation https://lavaan.ugent.be/tutorial/mediation.html Yが従属変数、Xが独立変数(予測変数)、Mが媒介変数とする。 データは仮想のもの。 library(lavaan) set.seed(1234) X <- rnorm(100) M <- 0.5*X + rnorm(100) Y <- 0.7*M + rnorm(100) …

lavaanの制約の構文[R]

制約条件の記号 記号 記述例 意味 == a == b aはbと同値である < a< b aはb以下の値となる > a>b aはb以上の値となる := a:=b aをbと定義する 準備 Holzinger and SwinefordのCFAモデルを簡略化して作成。 library(lavaan) model0 <- ' visual =~ x1 + x2 + …

lavaanのチュートリアル[R]

lavaanのチュートリアルが日本語翻訳されていたようだ。 英語版 https://lavaan.ugent.be/tutorial/tutorial.pdf 日本語翻訳 http://www.ec.kansai-u.ac.jp/user/arakit/documents/lavaanTutorial20170124.pdf 関西大学商学部の荒木孝治さんによる翻訳。

lavaanパッケージの構造方程式の初期値、モデル相関行列、決定係数[R]

今回も前回の続きlavaanパッケージのinspect関数についてである。 ides.hatenablog.com たくさんあるな中で、利用頻度の高そうな初期値、モデル相関行列、決定係数について求め方を書いた。 https://lavaan.ugent.be/tutorial/inspect.htmllavaan.ugent.be …

lavaanパッケージinspect関数[R]

lavaanの結果はsummary関数で出すが、それよりも詳細な結果が知りたい場合にはinspect関数を利用する。 https://lavaan.ugent.be/tutorial/inspect.htmllavaan.ugent.be 前準備 まずはこちらで分析したモデルを利用するので、オブジェクトfitに格納する。 li…

lavaanで分析した時の詳細情報[R]

https://lavaan.ugent.be/tutorial/inspect.htmllavaan.ugent.be 前準備 まずはこちらで分析したモデルを利用するので、オブジェクトfitに格納する。 library(lavaan) model <- ' # measurement model ind60 =~ x1 + x2 + x3 dem60 =~ y1 + y2 + y3 + y4 dem…

sem関数とlavaan関数[R]

sem関数が自働的にコードを補ってくれるため、基本的な分析には適しているが、細かいところまでコードを書き込む場合には、lavaan関数の方が向いていることもある。 sem関数での推定 PoliticalDemocracyを使って簡単なSEMを作成してみる。以下のようなSEMで…

構造方程式モデリングによる構成概念の因果関係[R]

今回扱うのは構造方程式によって作成した概念の因果を検証するモデルである。 データ lavaanに同梱されているPoliticalDemocracyを使用する。詳細はこちらのエントリ。 y1 1960年の報道の自由に関する専門家の評価 y2 1960年の政治的反対運動の自由 y3 1960…

ω係数[R]

ω(オメガ)係数は内的整合性を確認するための指標である。近年はCronbachのαより良い方法と言われることが多い。Cronbachのαは因子構造を無視して、一次元性の検証していることが原因である。 データ psychパッケージに含まれるIPIP-NEOのデータbfiを使用する…

lavaanパッケージを用いて階層因子分析を推定する[R]

階層因子分析(hierarchical factor analysis)について松田淑美・狩野裕「高次因子分析モデルと階層因子分析モデルについて」から説明を引用しよう。 http://www.sigmath.es.osaka-u.ac.jp/~kano/research/meeting/20050827_BSJ33/matsudaABS.pdf 階層因子…

lavaanパッケージを用いて二次因子分析モデルを推定する[R]

二次因子分析モデル(second order factor analysis)とは「斜交解による通常の因子分析の結果,因子聞に強い相闘が観察されたときには,それらの因子に共通して影響を与える上位の因子を想定することができます。このように,通常の因子分析における複数の因…